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Linear three-dimensional instability of a
magnetically driven rotating flow
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The instability of a rotating-magnetic-field-driven liquid metal flow in a finite cylinder
with respect to infinitesimal azimuthally periodic perturbations is studied numerically.
This instability is observed to set in prior its axisymmetric counterpart with relatively
low frequency at diameter-to-height ratios between 0.5 and 2. The axisymmetric
and three-dimensional instabilities have similar characteristic features. The instability
originates in the cross-section of the horizontal and vertical rotating boundary layers
and excites inertial waves in the inviscid core.

1. Introduction
A rotating magnetic field (RMF) induces an azimuthal body force in a column

of liquid metal. The resulting flow in a finite cylinder consists of an inviscid almost
rigidly rotating core separated from the rigid walls by pronounced boundary layers
(e.g. Grants & Gerbeth 2001 and references therein). Thus, one expects the Taylor–
Görtler instability of the side layer (see the review by Saric 1994) and the instability of
the Bödewadt-type horizontal layer (Savaş 1987; Lopez & Weidman 1996; Lingwood
1997) to occur at a certain order depending on the aspect ratio. The subject is
complicated by the fact that the Taylor–Görtler rolls are triggered by a small finite
perturbation via a non-normal–nonlinear transition mechanism in the linearly stable
regime. Such a transition may occur over a broad control parameter range depending
on the shape and amplitude of finite disturbances, as is often observed in various
shear flows (see the review by Grossmann 2000). As is typical for such cases, the basic
flow is marked by degenerated leading eigenmodes. Thus, the small perturbations,
being poorly spanned by the eigendirections, may grow considerably in energy. This
is known as energetical instability. This linear phenomenon may amplify the energy
of the initial perturbation by orders of magnitude. However, after reaching the
maximum such a perturbation decays rapidly if it is not attracted by a system of
saddle-type fixed points, representing another pivotal feature of a dynamical system
under non-normal–nonlinear transition. Once the phase trajectory enters the domain
of attraction of these additional solutions it moves between them for much longer
times than prescribed by the decaying eigenmodes of the basic solution. We have found
(Grants & Gerbeth 2001) that the minimum amplitude of an unstable perturbation
decreases with the relative diameter of the cylinder and becomes smaller than 10−6 for
a diameter-to-height ratio 0.25. Thus, the axisymmetric flow may behave chaotically
though the basic state is still linearly stable to axisymmetric perturbations.

The three-dimensional instability of the RMF-driven flow has not been considered
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up to now, partially due to a lack of understanding of the axisymmetric flow dynamics.
Tomasino & Marty (2000) reported an almost negligible departure from the axial
symmetry in their numerical three-dimensional simulations of the RMF-driven flow.
However, no systematic stability analysis was performed. Volz & Mazuruk (2001)
experimentally investigated the influence of an RMF on Rayleigh–Bénard convection
in a cylindrical column of liquid gallium with an aspect ratio of 1. They found
an onset of oscillations independent of the temperature field at an RMF driving
force some 10% below the two-dimensional instability limit. There is experimental
(Escudier 1984) and numerical evidence (Gelfgat, Bar-Yoseph & Solan 2001) that the
related lid-driven flow instability is axisymmetric in a certain range of aspect ratios
around unity. The numerical analysis revealed that the instability is three-dimensional
both in a more elongated and a flattened cylinder.

Initially, our objective was to identify the aspect ratio range in which the axisym-
metric linear instability prevails in the RMF-driven flow. We addressed the problem by
employing a numerical time integration of the linearized Navier–Stokes equation for
separate azimuthal modes. After some transient filtering time the solution contained
only a few leading eigenmodes that were separated by a simple and efficient method
(Goldhirsch, Orszag & Maulik 1987). We found that the linear three-dimensional in-
stability is similar in appearance but sets in well before its axisymmetric counterpart
for the aspect ratios considered. We also found that the instability originates in the
corner. Thus, the boundary layer instability results do not apply despite these layers
being thin and pronounced.

2. Formulation of the problem
We consider a small three-dimensional perturbation v superimposed on the axisym-

metric basic flow U of an incompressible Newtonian fluid with kinematic viscosity
ν, in a cylinder of radius R0 and height 2H0. Neglecting the higher-order small
nonlinearity the dynamics of such a perturbation is described by

∂v

∂t
+ ω ×U +Ω× v = ∇2v − ∇P (2.1)

∇ · v = 0, (2.2)

where Ω = ∇×U and ω = ∇× v. The no-slip boundary conditions are

v|D = 0, (2.3)

where D stands for the surface of the domain. The scales ν/H0, H
2
0/ν and H0 or

R0 were used in equations (2.1) and (2.2) for velocity, time and axial or radial
coordinate, respectively. The basic flow U is driven by a low-frequency low-induction
rotating magnetic field forcing an azimuthal rotation of the liquid. The so-called
Ekman pumping generates radial inflow jets near the stationary horizontal walls. Two
toroidal vortices result, providing a radial outward flow in the bulk of the column.
For more details of the basic flow and its axisymmetric stability we refer to Grants &
Gerbeth (2001). The problem is determined by two governing parameters: the aspect
ratio R = R0/H0 and the magnetic Taylor number Ta = ωσB2

0H
4
0/(2ν

2ρ) where ω
and B0 are angular frequency and induction of the RMF, and σ and ρ are electric
conductivity and density of the liquid, respectively.
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3. Numerical techniques
3.1. Spectral presentation

An arbitrary perturbation v(r, φ, z, t) can be decomposed into azimuthal modes
vm(r, z, t) eimφ that are independent in the linear approximation. The basic flow under
consideration has certain vertical symmetries Ur(r, z) = Ur(r,−z), Uφ(r, z) = Uφ(r,−z)
and Uz(r, z) = −Uz(r,−z). Taking into account this vertical symmetry of U the
Chebyshev expansion of the perturbation can be split into independent symmetric

vm+
r (r, z, t) =

N∑
i=1

M−1+p∑
j=1

vm+
ij (t)T2i−2(z)T2j−1−p(r), (3.1)

vm+
φ (r, z, t) =

N∑
i=1

M−1+p∑
j=1

um+
ij (t)T2i−2(z)T2j−1−p(r), (3.2)

vm+
z (r, z, t) =

N−1∑
i=1

M−p∑
j=1

wm+
ij (t)T2i−1(z)T2j−2+p(r) (3.3)

and antisymmetric

vm−r (r, z, t) =

N−1∑
i=1

M−1+p∑
j=1

vm−ij (t)T2i−1(z)T2j−1−p(r), (3.4)

vm−φ (r, z, t) =

N−1∑
i=1

M−1+p∑
j=1

um−ij (t)T2i−1(z)T2j−1−p(r), (3.5)

vm−z (r, z, t) =

N∑
i=1

M−p∑
j=1

wm−ij (t)T2i−2(z)T2j−2+p(r) (3.6)

parts, where Tn(x) = cos(n arccos(x)) are the orthogonal Chebyshev polynomials and
p is the remainder of m/2, i.e. p = 0 for even m or p = 1 for odd m. Since the velocity
is a real-valued function, only positive wavenumbers are considered. The radial
dependence of the components (3.1)–(3.6) includes only radial coordinate modes of
appropriate parity: the parity of the vz radial dependence is equal to the parity of
the wavenumber m. Thus, the radial coordinate expansions (3.3) and (3.6) contain
only even terms for even m and only odd terms for odd m. The parity of vr and vφ is
opposite to that of vz . It can be easily verified (e.g. Grants & Gerbeth 2001) that this
is necessary (not sufficient) for the expressions (3.1)–(3.6) to be infinitely differentiable
for r 6 1. The corresponding nodal presentation is defined on the Gauss–Lobatto
mesh in a square [0 : 1]× [0 : 1].

3.2. Temporal approximation

The third-order temporal approximation of (2.1) at time step tn+1 is written

11

6∆t
vn+1 − 1

3∆t

(
vn − vn−1

2
+
vn−2

9

)
= ∇2vn+1 + 3qn − 3qn−1 + qn−2 − ∇P , (3.7)

where q = −(ω × U + Ω × v). The scheme is fully implicit for the diffusive term
while the convective term is explicitly extrapolated from three previous time steps.
This leads to the Helmholtz equation for a divergence-free vector field, where the
incompressibility is adjusted by P .
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3.3. Pressure boundary conditions

By taking the divergence of equation (3.7) we obtain a Poisson equation for the
pressure P in the form

∇2P = ∇ ·Q. (3.8)

The boundary conditions are evaluated by means of the spectral dependence matrix
(Tuckerman 1989; Canuto et al. 1988). Initially the zero-pressure boundary conditions
are applied at each time step, and the corresponding ∇ · v|D is evaluated. The spectral
dependence matrix ‘translates’ this into the Dirichlet boundary condition for pressure
P |D = PBC with which ∇ · v|D = 0. The spectral dependence matrix is evaluated once
at the beginning of the simulation for a given time step ∆t.

3.4. Solution of the Helmholtz equation

The Helmholtz vector equation (3.7) couples the vφ and vr components, but the
variables s+ = vφ + ivr and s− = vφ − ivr decouple (Tuckerman 1989). The resulting
scalar Helmholtz equations were solved with the collocation approximation for the
radial part of the Laplace operator, yielding a real spectrum. The usual Chebyshev
tau approximation was applied in the axial direction. Such a combination of different
approximations enabled a conventional diagonalization of the radial operator in
combination with a fast factorization of the axial dependence in O(NM) operations
(Canuto et al. 1988).

3.5. Evaluation of the leading eigenvalue and eigenvector

After discretization the equations (2.1) and (2.2) in terms of the unknown time-
dependent coefficients in equations (3.1)–(3.3) or (3.4)–(3.6) may be put into the
canonical form ẋ = Ax where A is a general complex non-symmetric matrix. The flow
is linearly unstable if there is an eigenvalue of A with a positive real part. Thus, to
solve the instability problem the matrix A and its full spectrum must be evaluated.
There is an alternative way of finding the leading eigenvectors and eigenvalues (those
with the maximum real part) as introduced by Goldhirsch et al. (1987). Given the
solution vector x as a linear combination of a few leading eigenmodes at a few
equidistant time intervals (t = (l − 1)τ, l = 1, 2, . . . , L) this method evaluates these
modes and corresponding eigenvalues. In that way, the stability problem reduces to the
time integration of (3.7). We perturbed the flow with a divergence-free perturbation
satisfying the appropriate boundary and pole conditions:

v+
r (r, φ, z) = (P1(z)Q1(r) + iP2(z)Q2(r))r

m−1 eimφ, (3.9)

v+
z (r, φ, z) = z(Q1(z)P1(r) + iQ2(z)P2(r))r

m−1 eimφ, (3.10)

v+
φ (r, φ, z) =

i

m

(
r
∂v+

r

∂r
+ v+

r + Rr
∂v+

z

∂z

)
, (3.11)

or

v−r (r, φ, z) = zv+
r , v−z =

v+
z

z
, v−φ =

i

m

(
r
∂v−r
∂r

+ v−r + Rr
∂v−z
∂z

)
, (3.12)

with Pi = 1−x2i, Qi = 1−((i+1)x2−x2+2i)/i and integrated (3.7) over a certain filtering

time τfilt ≈ 2Ω
−1/2
0 /m, where Ω0 is the characteristic rotation rate of the basic flow.

After this time the solution contained (within 0.01% tolerance) only a few (some 5 to
30) eigenmodes that were separated by the method of Goldhirsch et al. (1987). This
approach saves a considerable amount of computational time and computer memory
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Figure 1. The maximum absolute error of the numerical test solution versus: (a) spatial resolution;
(b) time step. The solid and dashed lines mark symmetric and antisymmetric solutions, respectively.
The symbols +×�∗ correspond to wavenumbers m = 1–4, respectively. The thick line displays the
(∆t)−3 slope.

for large eigenvalue problems since the full matrix need not be evaluated, stored
and decomposed. The method should be used with caution, however, since spurious
eigenvalues may be obtained. For instance, the numerical approximation error may be
misinterpreted as an eigenmode. These artifacts have small characteristic amplitude.
To eliminate them, the equations were additionally (where needed) integrated in time
until the amplitude of the leading eigenmode found was at least 30% of the largest
amplitude. To check the leading eigenmode obtained we took it as the initial state
integrated over time τfilt and approximated the time history of u11(t) with a function
A eλt by means of a nonlinear least-squares Marquardt–Levenberg algorithm. The
eigenvalue search procedure was repeated with a different filtering time τfilt and/or
the sampling interval τ if the absolute value of the leading eigenvalue λ = λr + iλi
differed by more than 0.1%, or the asymptotic standard error of the fit parameters
was larger than 0.01%, which was rarely the case for a sufficient numerical resolution.

3.6. Numerical tests

Each block of the algorithm was carefully tested in the course of the program
development. The program passed the following two tests. First, we considered a
test basic flow with angular velocity Ω = 10 cos(πz/2) cos(πr/2) and the meridional
stream function ψ = −1.25(1+cos(πz))(1+cos(πr))zr2. A divergence-free test solution

ṽ(r, z) ei(mφ+σt) (3.13)

satisfying the no-slip condition as well as appropriate pole conditions was constructed
in the form of a low-order polynomial (3.9)–(3.12) that was inserted in equation (2.1).
After some algebra an expression for a formal periodic body force

f(r, z) ei(mφ+σt) = (iσṽ + ω̃ × Ũ + Ω̃× ṽ + ∇× ∇× ṽ + ∇P̃ ) ei(mφ+σt)

was obtained that supports (3.13). This formal periodic body force is defined up to
an arbitrary gradient of a scalar P̃ . We chose this scalar so that fφ = 0. The values
of σ and R were 20 and 1.5, respectively. The equations were integrated up to the
time t = 2. The solution obtained was compared to the exact test solution (3.13) for
different temporal and spatial (N = M) resolutions. We obtained an exponential or
third-order convergence rate of the spatial or temporal approximation, respectively,
as it can be observed in figure 1.

The second test considered the onset of the linear three-dimensional instability



234 I. Grants and G. Gerbeth

2.0

1.8

1.6

1.4

1.2
–1.0 –0.5 0 0.5 1.0

log2 R

0

1

1

2

4

3

R = 1.53

R = 0.81

Ta
m

 R
(×

 1
0

–5
)

Figure 2. The neutral stability curves for various azimuthal modes. Thick and thin lines corre-
spond to symmetric and antisymmetric perturbations, respectively. Note that for the purpose of a
comprehensive presentation the product of Taylor number and aspect ratio is shown here.

of the rotating lid-driven flow in a cylinder with aspect ratio R = 2/3.25 ≈ 0.615
as recently reported by Gelfgat et al. (2001). The model boundary conditions were
defined by U (r, 1) = Ω0Rr(1− exp(50(r4−1)))eφ at the top (z = 1) and zero elsewhere
on D. Since the basic solution no longer had vertical symmetry our algorithm was
modified to full vertical coordinate z expansions instead of the separation between
equations (3.1)–(3.3) and equations (3.4)–(3.6). The basic flow was evaluated as the
steady state of the time-dependent solution with a spatial resolution 55 × 41. We
evaluated the leading eigenvalue for m = 3 for various spatial resolutions (25 × 13,
29× 15 or 33× 21). The critical rotation rate Ωcr

0 was found as 7167, 7272 or 7275.6
with the oscillation frequency −2118, −2147.8 or −2147.8 for the different resolutions,
respectively. The other modes with m = 1, 2, 4–6 had negative growth rates. Compared
to Gelfgat et al. (2001) the critical lid rotation rate differed by 0.4%, which can be
attributed to the smoothed specification of the boundary condition. The oscillation
frequency of the critical perturbation agreed within 0.05% tolerance.

4. Results
Aspect ratios in the range 0.5 < R < 2 were considered at the maximum spatial

resolution 51 × 41. The neutral stability curves Tam(R) were evaluated as roots of
λr(Ta, R, m) for m = 1− 4 (figure 2). Higher modes with m > 4 had distinctly lower,
and monotonically decreasing with m, negative growth rate λr at the critical control
parameter Tacr = minm(Tam). Azimuthal wavenumbers up to m = 15 were considered
for selected aspect ratios R = 0.5, 1 or 2. A few examples of the convergence of the
critical parameters are given in table 1.

The instability onset was observed with the azimuthal wavenumber m = 1 and
an approximately constant angular frequency λcri ≈ 650 (figure 3) for elongated
cylinders with R 6 0.81. In this range of R the m = 2 mode became unstable
almost simultaneously with λcri < 0. The negative frequency means co-rotation of the
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R = 0.5, m = 1 R = 1.0, m = 2 R = 2.0, m = 3

N ×M Tacr λcri N ×M Tacr λcri N ×M Tacr λcri
(×10−5) (×10−5) (×10−5)

37× 25 3.598 693.2 33× 23 1.238 −162.8 31× 25 0.892 −249.0
41× 27 3.618 694.3 39× 27 1.231 −160.40 35× 29 0.9017 −251.2
45× 29 3.610 693.4 45× 33 1.232 −160.42 41× 35 0.9019 −251.62
51× 31 3.612 693.6 51× 37 1.232 −160.42 51× 41 0.9020 −251.65

Table 1. Convergence of the critical parameters.
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Figure 3. Frequency of neutrally stable modes vs. aspect ratio. − . . .−, The critical Reynolds
number Re = max(Uφ)H0/ν.

perturbation with respect to the direction of the azimuthal flow. The absolute value of
this frequency decreased for increasing R and became distinctly lower in comparison
to the frequency of the mean flow rotation in the range 0.81 < R < 1.53 where the
m = 2 mode was dominating. The m = 3 co-rotating mode prevailed for R > 1.53.
The antisymmetric perturbation v− typically had a higher neutral stability limit than
the corresponding v+ for m = 1, 2, whereas the leading eigenvalues of the symmetric
and antisymmetric perturbations were almost identical for m = 3, 4. The amplitude of
the critical perturbation and its phase dynamics are shown in figure 4(a–i ) for aspect
ratios R = 0.5, 1 and 2.

5. Discussion
The three-dimensional instability always sets in prior to the linear axisymmetric

instability for the aspect ratios considered. The azimuthal wavenumber of the critical
perturbation increases with the relative diameter R. These two observations constitute
an important difference to the lid-driven flow, where the most unstable perturbation is
axisymmetric in the range 0.725 < R < 1.23 and has a higher azimuthal wavenumber
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Figure 4. The critical perturbation normalized to max |vφ| = 1: radial, azimuthal and axial velocity
for R = 0.5, m = 1 (a–c); R = 1, m = 2 (d–f ); R = 2, m = 3 (g–i ). The upper part of each plot
depicts the perturbation amplitude with isoline step 0.1. The lower part depicts the zero isoline of
the perturbation for phase shift 0, π/4, π/2 and 3π/4 with solid, dashed, dash-dotted and dotted
lines, respectively.

(m = 4 or 3) in an elongated cylinder. In the present RMF-driven flow the m = 2
mode shows a remarkably low frequency: |λcri | � Ω0. We found the change of the
frequency sign at practically the same aspect ratio R = 1.30 as reported by Gelfgat
et al. (2001) for the lid-driven flow. Thus, a bifurcating steady three-dimensional
solution may be observed close to this aspect ratio in both cases. There is a variation
of the velocity perturbation in the z-direction (similar to that in figure 4d–f for
R = 1) in the almost rigidly rotating core of the basic flow. It might be mistakenly
regarded as a contradiction of the Taylor–Proudman theorem which states that an
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Figure 5. The basic flow at near-critical forcing in the corner for (a) R = 0.5, Ta = 3.61 × 105;
(b) R = 1, Ta = 1.23 × 105; and (c) R = 2, Ta = 0.903 × 105. The upper and lower part of each
plot depicts the azimuthal velocity Uφ and the absolute velocity of meridional motion (U2

z +U2
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1/2,
respectively. The isoline step is 100. Dotted lines depict streamlines of the meridional flow.

almost rigidly rotating inviscid flow allows no quasi-steady perturbation varying
along the axis of rotation. However, the theorem is stated in the rotating frame,
where the three-dimensional perturbation is unsteady. Thus, the steady perturbation
is, in fact, an inertial wave counter-rotating with respect to the inviscid core with
exactly the same angular velocity. The experimental instability investigation of an
RMF-driven liquid metal flow would be more complicated than the lid-driven flow
where a transparent liquid might be used. In both cases, the measurement techniques
should not perturb the flow. As a result one may have to deal with very low signals
obscured by the instrument noise and possible axisymmetric nonlinear flow effects.
However, the particularly low eigenfrequency of the m = 2 mode may serve as its
signature under such circumstances since the axisymmetric modes have frequencies
closer to Ω0.

There is a close similarity of the three-dimensional instability to its axisymmetric
counterpart. Both can be discussed as follows. Since the instability has the largest
amplitude in the corner, one may conclude that it originates there. Indeed, the
thickness of the side layer increases towards the corner, making it more unstable.
Besides, the secondary flow imposes an additional centrifugal force due to the rotation
in the meridional plane. The trajectories of fluid particles are spirals wound on the
irregular tori ψ(r, z) = const (dotted lines in figure 5). Although the meridional flow
may be considerably slower than the azimuthal rotation (especially for small R) the
small radius of the streamline bending compensates this in the expression for the
centrifugal force. Thus, the meridional basic flow adds a considerable contribution
to the centrifugal forces being outweighed by the pressure gradient. Such a balance
is known to be unstable if the circulation square decreases outwards (Rayleighs’
criterion). The corner is just a small part of the whole volume where the strong
meridional flow instantly washes away the perturbation. To grow as a whole, the
perturbation may be a wave propagating upstream or it needs a certain feedback
‘communication’. Both can be observed to a different extent by inspection of the
perturbation phase dynamics (figure 4, arrows mark the phase velocity direction). The
second option is provided by the inviscid core. From an infinite family of inertial waves
the one is selected that properly resonates with the perturbation in both boundary
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Figure 6. (a) The local Reynolds number vs. radius in the near-critical basic flow. The dashed, solid
and dash-dotted curves correspond to R = 2, 1 and 0.5, respectively. (b) The angular velocity in the
horizontal layer for R = 2. Symbols +, ×, ∗ � correspond to r = 0, 0.5, 0.61 and 0.71, respectively.
The solid line depicts the Bödewadt solution.

layers, thus supporting a certain feedback from the horizontal to the vertical layer
over the core.

How far does the three-dimensional instability extend if the length of the cylinder
increases? A quantitative answer to this question may be random due to the non-
normal–nonlinear transition. We have shown (Grants & Gerbeth 2001) that the
sensitivity of the flow to finite axisymmetric disturbances increases with the relative
height of the cylinder. Therefore, we did not perform the linear stability analysis
for an elongated cylinder R < 0.5 since the nonlinear transition is expected to
prevail then. The question of whether the flow stays axisymmetric or also involves
three-dimensional modes during the nonlinear transition is beyond the scope of this
article.

Let us illustrate the results obtained in dimensional terms with an example of
recently published (Volz & Mazuruk 2001) temperature measurements in RMF-
driven liquid gallium flow heated from below. For a sufficiently strong forcing the
onset was observed at Ta = 1.5× 105 independent of the imposed thermal gradient.
With ν = 3.19 × 10−7 m2 s−1, R0 = H0 = 1.2 cm, the maximum azimuthal velocity
of the near-critical flow is around 2.5 cm s−1. The signal from the thermistors was
periodic and contained several frequencies: multiples of f0 = 0.12 Hz. According to
our analysis the frequency of the m = 2 and m = 1 modes is 0.055 Hz (λi = −156) and
0.26 Hz (λi = 725), respectively at Ta = 1.5× 105. The instability occurred below the
axisymmetric limit and had a low frequency, in qualitative agreement with conclusions
of the present analysis.

Instability of the Bödewadt layer was first observed experimentally in a spin-down
flow by Savaş (1987) who reported the onset in the form of circular waves m = 0 at

the local Reynolds number Rel = Ω
1/2
0 Rr = 25. This agrees well with the absolute

instability criterion Recrl = 21.6 with a local azimuthal wavenumber βcr = −0.117
obtained by Lingwood (1997) in a parallel flow approximation. Note, that the true
azimuthal wavenumber m = |[βcrRecrl ]| = 2 is too small to be correctly distinguished
from 0 in this approximation. The small radial wavenumber αcr = 0.34 reported is
in disagreement with the parallel flow approximation at such a low local Reynolds
number. Indeed, the radial wavelength 2π/αcr = 18.5 ≈ Recrl is comparable to the
critical radius. The non-parallel effects were included into the analysis by Fernandez-
Feria (2000) who reported two instability modes, one with a considerably higher
local radial wavenumber α ≈ 0.6 for large local Reynolds numbers and αcr ≈ 0.48 at
Recrl ≈ 20. We did not observe this instability in the near-critical RMF-driven flow,
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although the local Reynolds number exceeded Recrl at two times and the boundary
layers were well developed (figure 6). We see two reasons for this: (i) the influence of
the finite aspect ratio suppresses the boundary layer instability, see the experimental
results by Gauthier, Gondret & Rabaud (1999) or the numerical evidence by Lopez
& Weidman (1996); (ii) the region with Rel > Recrl and a developed Bödewadt layer
is too narrow: only one wavelength (with α = 0.6) fits into 0.5 < r < 0.8 where both
conditions are fulfilled (figures 5c, 6a).

6. Conclusions
The rotating-magnetic-field-driven flow in a cylinder becomes unstable first to

non-axisymmetric, azimuthally periodic perturbations at diameter-to-height ratios R
between 0.5 and 2. The azimuthal wavenumber m of the first instability increases
with R from 1 to 2 and from 2 to 3 at R = 0.81 and 1.54, respectively. Although
the inherent Bödewadt layers seem thin and pronounced, the related boundary layer
instability approaches do not apply since in the present RMF-driven case these layers
are still too thick or not sufficiently developed in the near-critical flow. The instability
originates in the cross-section of both rotating layers and involves a complicated
interaction with inertial waves in the inviscid core. Hence, the instability is essentially
global and its quantitative properties cannot be extrapolated to related flows as one
can see by comparison to the lid-driven flow.

The authors appreciate productive discussions with V. Shatov concerning the
numerical techniques.
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